Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Measurements of the accelerations of stars enabled by time-series extreme-precision spectroscopic observations, pulsar timing, and eclipsing binary stars in the solar neighborhood offer insights into the mass distribution of the Milky Way that do not rely on traditional equilibrium modeling. Given the measured accelerations, we can determine a total mass density and infer the amount of dark matter (DM) by accounting for the mass in stars, gas, and dust. Leveraging FIRE-2 simulations of Milky Way–mass galaxies we compare vertical acceleration profiles between cold DM (CDM) and self-interacting DM (SIDM) with a constant cross section of 1 cm2g−1across three halos with diverse assembly histories. Notably, significant asymmetries in vertical acceleration profiles near the midplane at fixed radii are observed in both CDM and SIDM, particularly in halos recently affected by mergers with satellites of Sagittarius/SMC-like masses or greater. These asymmetries offer a unique window into exploring the merger history of a galaxy. We show that SIDM halos manifest a more oblate shape and consistently exhibit higher local stellar and DM densities and steeper vertical acceleration gradients, up to 10%–30% steeper near the solar neighborhood. However, similar magnitude changes can arise from azimuthal variations in the baryonic components at a fixed radius and external influences like mergers, making it difficult to distinguish between CDM and SIDM using acceleration measurements in a single galaxy.more » « less
-
We report discovery and characterization of a main-sequence G star orbiting a dark object with mass . The system was discovered via Gaia astrometry and has an orbital period of 731 days. We obtained multi-epoch RV follow-up over a period of 639 days, allowing us to refine the Gaia orbital solution and precisely constrain the masses of both components. The luminous star is a ,Gyr-old, low-metallicity halo star near the main-sequence turnoff (,K; ; ; ) with a highly enhanced lithium abundance. The RV mass function sets a minimum companion mass for an edge-on orbit of , well above the Chandrasekhar limit. The Gaia inclination constraint, ,deg, then implies a companion mass of . The companion is most likely a massive neutron star: the only viable alternative is two massive white dwarfs in a close binary, but this scenario is disfavored on evolutionary grounds. The system’s low eccentricity ( ) disfavors dynamical formation channels and implies that the neutron star likely formed with little mass loss ( ) and with a weak natal kick (). Stronger kicks with more mass loss are not fully ruled out but would imply that a larger population of similar systems with higher eccentricities should exist. The current orbit is too small to have accommodated the neutron star progenitor as a red supergiant or super-AGB star. The simplest formation scenario – isolated binary evolution – requires the system to have survived unstable mass transfer and common envelope evolution with a donor-to-accretor mass ratio . The system, which we call Gaia NS1, is likely a progenitor of symbiotic X-ray binaries and long-period millisecond pulsars. Its discovery challenges binary evolution models and bodes well for Gaia’s census of compact objects in wide binaries.more » « less
-
Abstract We analyse stellar streams in action-angle coordinates combined with recent local direct acceleration measurements to provide joint constraints on the potential of our galaxy. Our stream analysis uses the Kullback–Leibler divergence with a likelihood analysis based on the two-point correlation function. We provide joint constraints from pulsar accelerations and stellar streams for local and global parameters that describe the potential of the Milky Way (MW). Our goal is to build an “acceleration ladder,” where direct acceleration measurements that are currently limited in dynamic range are combined with indirect techniques that can access a much larger volume of the MW. To constrain the MW potential with stellar streams, we consider the Palomar 5, Orphan, Nyx, Helmi, and GD1 streams. Of the potential models that we have considered here, the preferred potential for the streams is a two-component Staeckel potential. We also compare the vertical accelerations from stellar streams and pulsar timing, defining the function , where Φ is the MW potential determined from stellar streams andα1 pulsarzis the vertical acceleration determined from pulsar timing observations. Our analysis indicates that the Oort limit determined from streams is consistently (regardless of the choice of potential) lower than that determined from pulsar timing observations. The calibration we have derived here may be used to correct the estimate of the acceleration from stellar streams.more » « less
-
Abstract Based on the rate of change of its orbital period, PSR J2043+1711 has a substantial peculiar acceleration of 3.5 ± 0.8 mm s–1yr–1, which deviates from the acceleration predicted by equilibrium Milky Way (MW) models at a 4σlevel. The magnitude of the peculiar acceleration is too large to be explained by disequilibrium effects of the MW interacting with orbiting dwarf galaxies (∼1 mm s–1yr–1), and too small to be caused by period variations due to the pulsar being a redback. We identify and examine two plausible causes for the anomalous acceleration: a stellar flyby, and a long-period orbital companion. We identify a main-sequence star in Gaia DR3 and Pan-STARRS DR2 with the correct mass, distance, and on-sky position to potentially explain the observed peculiar acceleration. However, the star and the pulsar system have substantially different proper motions, indicating that they are not gravitationally bound. However, it is possible that this is an unrelated star that just happens to be located near J2043+1711 along our line of sight (chance probability of 1.6%). Therefore, we also constrain possible orbital parameters for a circumbinary companion in a hierarchical triple system with J2043+1711; the changes in the spindown rate of the pulsar are consistent with an outer object that has an orbital period of 60 kyr, a companion mass of 0.3M⊙(indicative of a white dwarf or low-mass star), and a semimajor axis of 1900 au. Continued timing and/or future faint optical observations of J2043+1711 may eventually allow us to differentiate between these scenarios.more » « lessFree, publicly-accessible full text available April 7, 2026
-
ABSTRACT We present a model for the formation of the Magellanic Stream (MS) due to ram pressure stripping. We model the history of the Small and Large Magellanic Clouds in the recent cosmological past in a static Milky Way (MW) potential with diffuse halo gas, using observationally motivated orbits for the Magellanic Clouds derived from HST proper motions within the potential of the MW. This model is able to reproduce the trailing arm but does not reproduce the leading arm feature, which is common for models of the stream formation that include ram pressure stripping effects. While our model does not outperform other models in terms of matching the observable quantities in the MS, it is close enough for our ultimate goal – using the MS to estimate the MW mass. By analysing our grid of models, we find that there is a direct correlation between the observed stream length in our simulations and the mass of the MW. For the observed MS length, the inferred MW mass is 1.5 ± 0.32 × 1012$$\, \mathrm{M}_\odot$$, which agrees closely with other independent measures of the MW mass. We also discuss the MS in the context of H i streams in galaxy clusters, and find that the MS lies on the low-mass end of a continuum from Hickson groups to the Virgo cluster. As a tracer of the dynamical mass in the outer halo, the MS is a particularly valuable probe of the MW’s potential.more » « less
-
Abstract We describe the discovery of a solar neighborhood ( d = 468 pc) binary system with a main-sequence sunlike star and a massive noninteracting black hole candidate. The spectral energy distribution of the visible star is described by a single stellar model. We derive stellar parameters from a high signal-to-noise Magellan/MIKE spectrum, classifying the star as a main-sequence star with T eff = 5972 K, log g = 4.54 , and M = 0.91 M ⊙ . The spectrum shows no indication of a second luminous component. To determine the spectroscopic orbit of the binary, we measured the radial velocities of this system with the Automated Planet Finder, Magellan, and Keck over four months. We show that the velocity data are consistent with the Gaia astrometric orbit and provide independent evidence for a massive dark companion. From a combined fit of our spectroscopic data and the astrometry, we derive a companion mass of 11.39 − 1.31 + 1.51 M ⊙ . We conclude that this binary system harbors a massive black hole on an eccentric ( e = 0.46 ± 0.02), 185.4 ± 0.1 day orbit. These conclusions are independent of El-Badry et al., who recently reported the discovery of the same system. A joint fit to all available data yields a comparable period solution but a lower companion mass of 9.32 − 0.21 + 0.22 M ⊙ . Radial velocity fits to all available data produce a unimodal solution for the period that is not possible with either data set alone. The combination of both data sets yields the most accurate orbit currently available.more » « less
-
Abstract The Galactic bulge is critical to our understanding of the Milky Way. However, due to the lack of reliable stellar distances, the structure and kinematics of the bulge/bar beyond the Galactic center have remained largely unexplored. Here, we present a method to measure distances of luminous red giants using a period–amplitude–luminosity relation anchored to the Large Magellanic Cloud, with random uncertainties of 10%–15% and systematic errors below 1%–2%. We apply this method to data from the Optical Gravitational Lensing Experiment to measure distances to 190,302 stars in the Galactic bulge and beyond out to 20 kpc. Using this sample, we measure a distance to the Galactic center ofR0= 8108 ± 106stat± 93syspc, consistent with direct measurements of stars orbiting Sgr A*. We cross-match our distance catalog with Gaia DR3 and use the subset of 39,566 overlapping stars to provide the first constraints on the Milky Way’s velocity field (VR,Vϕ,Vz) beyond the Galactic center. We show that theVRquadrupole from the bar’s near side is reflected with respect to the Galactic center, indicating that the bar is bisymmetric and aligned with the inner disk. We also find that the vertical heightVZmap has no major structure in the region of the Galactic bulge, which is inconsistent with a current episode of bar buckling. Finally, we demonstrate withN-body simulations that distance uncertainty plays a factor in the alignment of the major and kinematic axes of the bar, necessitating caution when interpreting results for distant stars.more » « less
-
Abstract The shape and orientation of dark matter (DM) halos are sensitive to the microphysics of the DM particles, yet in many mass models, the symmetry axes of the Milky Way’s DM halo are often assumed to be aligned with the symmetry axes of the stellar disk. This is well motivated for the inner DM halo, but not for the outer halo. We use zoomed-in cosmological baryonic simulations from the Latte suite of FIRE-2 Milky Way–mass galaxies to explore the evolution of the DM halo’s orientation with radius and time, with or without a major merger with a Large Magellanic Cloud analog, and when varying the DM model. In three of the four cold DM halos we examine, the orientation of the halo minor axis diverges from the stellar disk vector by more than 20° beyond about 30 galactocentric kpc, reaching a maximum of 30°–90°, depending on the individual halo’s formation history. In identical simulations using a model of self-interacting DM withσ= 1 cm2g−1, the halo remains aligned with the stellar disk out to ∼200–400 kpc. Interactions with massive satellites (M≳ 4 × 1010M⊙at pericenter;M≳ 3.3 × 1010M⊙at infall) affect the orientation of the halo significantly, aligning the halo’s major axis with the satellite galaxy from the disk to the virial radius. The relative orientation of the halo and disk beyond 30 kpc is a potential diagnostic of self-interacting DM, if the effects of massive satellites can be accounted for.more » « less
-
ABSTRACT We show that smoothed particle hydrodynamics (SPH) simulations of dwarf galaxies interacting with a Milky Way-like disc produce moving groups in the simulated stellar disc. We analyse three different simulations: one that includes dwarf galaxies that mimic the Large Magellanic Cloud, Small Magellanic Cloud, and the Sagittarius dwarf spheroidal; another with a dwarf galaxy that orbits nearly in the plane of the Milky Way disc; and a null case that does not include a dwarf galaxy interaction. We present a new algorithm to find large moving groups in the VR, Vϕ plane in an automated fashion that allows us to compare velocity substructure in different simulations, at different locations, and at different times. We find that there are significantly more moving groups formed in the interacting simulations than in the isolated simulation. A number of dwarf galaxies are known to orbit the Milky Way, with at least one known to have had a close pericentre approach. Our analysis of simulations here indicates that dwarf galaxies like those orbiting our Galaxy produce large moving groups in the disc. Our analysis also suggests that some of the moving groups in the Milky Way may have formed due to dynamical interactions with perturbing dwarf satellites. The groups identified in the simulations by our algorithm have similar properties to those found in the Milky Way, including similar fractions of the total stellar population included in the groups, as well as similar average velocities and velocity dispersions.more » « less
-
Abstract We show that a small but measurable shift in the eclipse midpoint time of eclipsing binary (EBs) stars of ∼0.1 s over a decade baseline can be used to directly measure the Galactic acceleration of stars in the Milky Way at ∼kiloparsec distances from the Sun. We consider contributions to the period drift rate from dynamical mechanisms other than the Galaxy’s gravitational field and show that the Galactic acceleration can be reliably measured using a sample of Kepler EBs with orbital and stellar parameters from the literature. The contribution from tidal decay we estimate here is an upper limit assuming the stars are not tidally synchronized. We find there are about 200 detached EBs that have estimated timing precision better than 0.5 s, and for which other dynamical effects are subdominant to the Galactic signal. We illustrate the method with a prototypical, precisely timed EB using an archival Kepler light curve and a modern synthetic HST light curve (which provides a decade baseline). This novel method establishes a realistic possibility to constrain dark matter substructure and the Galactic potential using eclipse timing to measure Galactic accelerations, along with other emerging new methods, including pulsar timing and extreme-precision radial velocity observations. This acceleration signal grows quadratically with time. Therefore, given baselines established in the near future for distant EBs, we can expect to measure the period drift in the future with space missions like JWST and the Roman Space Telescope.more » « less
An official website of the United States government
